de Geschiedenis van de Aarde...
De geschiedenis van de Aarde schetst het ontstaan en de ontwikkeling van de planeet waarop de mensheid leeft. Volgens gangbare we-tenschappelijke inzichten is de Aarde ongeveer 4,56 miljard jaar (4,56·109 j.=4.560.000.000 jaar = 4,56 Ga) geleden gevormd door
accretie van materiaal uit de Zonnenevel.[1] De ouderdom van de Aarde is vastgesteld door radiometrische datering van de oudste
gesteenten en meteorieten (de andere planeten uit ons zonnestelsel zijn ongeveer tezelfdertijd ontstaan). Ter vergelijking:het heelal
ontstond waarschijnlijk met de oerknal, naar schatting 13,7 Ga geleden[2] en daarmee is het ongeveer drie keer zo oud als de Aarde.
Dit artikel geeft een samenvatting van wetenschappelijke theorieën over en inzichten in de geschiedenis van het systeem Aarde, dat bestaat uit de aardatmosfeer, de hydrosfeer, de biosfeeren de vaste Aarde. Deze inzichten zijn ontstaan door ontdekkingen in zeer uiteenlopende vakgebieden, zoals geochemie, geologie, evolutiebiologie, paleomagnetisme, ecologie, seismologie of astronomie. Nog steeds bestaan met name over de vroegste geschiedenis van de Aarde onduidelijkheden, waarover de wetenschappelijke inzichten nog verschillen. De geschiedenis van de Aarde wordt weleens vergeleken met het verloop van een dag, waarbij 53.000 jaar wordt voorge-steld door een seconde.
Hadeïcum en archeïcum
Het eerste eon van de geschiedenis van de Aarde wordt het Archeïcum ((en) Archean) genoemd. Het duurde tot 2,5 miljard jaar gele-den. De oudste op Aarde gevonden gesteenten zijn ongeveer 4,0 miljard jaar oud.[3] De tijd tussen de vorming van deze gesteenten en de vorming van de Aarde wordt soms als een apart eon gezien, dat hadeïcum of Hadean wordt genoemd. Omdat geen gesteente uit de-ze tijd bewaard is gebleven is er weinig over bekend,behalve dat de Aarde bloot moet hebben gestaan aan een bombardement v.me-teorieten. De grote warmtestroom moet bovendien voor hevig vulkanisme hebben gezorgd.Er zijn wel sporadisch kristallen van zirkoon
gevonden die ouder zijn dan 4,0 miljard jaar. Uit onderzoek van deze kristallen blijkt dat er wel al sinds 4,3 miljard jaar vloeibaar wa-ter in de vorm van zeeën aanwezig was. Rond 4,0 miljard jaar geleden hield het meteorietenbombardement op en was het ook koeler geworden. Vanwege de samenstelling van de Archeïsche atmosfeer was de Aarde echter nog steeds een planeet waarop hedendaags leven niet mogelijk was. Impressie van de protoplanetaire schijf waaruit het zonnestelsel ontstond.
Ontstaan van de Zon en de planeten
Het zonnestelsel ontstond waarschijnlijk uit een interstellaire roterende moleculaire wolk,de zonnenevel, die voornamelijk bestond uit
waterstof, helium en zwaardere elementen.[4] De Zonnenevel begon ongeveer 4,6 Ga geleden onder zijn eigen gewicht samen te trek-ken of doordat een nabije ster als supernova explodeerde waarvan de schokgolf de zonnenevel trof. Deze contractie zorgde samen met de steeds snellere rotatie van de zonnenevel dat het geheel afplatte tot een protoplanetaire schijf. De meeste massa concen-treerde zich in het midden van de schijf en warmde op door de wrijving van de samentrekkende massa, totdat kernfusie (van water-
stof naar helium) mogelijk werd. Zo werd een T Tauri-ster geboren: de Zon. In de rest v.d.gas- en stofwolk zorgde de zwaartekracht voor het samenballen van materie rond stofdeeltjes, waardoor de wolk in ringen uit elkaar viel. Bij botsingen tussen deeltjesmaterie werden steeds grotere fragmenten gevormd, een proces dat accretie genoemd wordt. Dit leidde tot de vorming van zogenaamde pla-
netesimalen of protoplaneten van meerdere tientallen kilometers in diameter.Uit computersimulaties blijkt dat uit een protoplanetaire schijf planeten kunnen ontstaan die vergelijkbare afstanden tot de Zon hebben als de terrestrische planeten.[5]
Ontstaan van de kern en eerste atmosfeer van de Aarde
Door accretie groeide de proto-Aarde, tot de temperatuur in het binnenste zo hoog was dat partieel smelten van de zware siderofiele
metalen plaatsvond. Door hun grotere dichtheid zonken de gesmolten metalen naar het massamiddelpunt, waardoor al na 10 Ma een scheiding tussen de primitieve mantel en de (metallische) aardkern ontstond.De Aarde was bij de accretie gehuld in een wolk van gas-vormig silica (SiO2) en na de afkoeling zal deze silica op het oppervlak zijn gecondenseerd tot vast gesteente. Wat overbleef was waarschijnlijk een vroege atmosfeer van waterstof en helium.
De grote inslag
Een bijzonder kenmerk van de Aarde is dat ze een grote natuurlijke satelliet heeft, de Maan. Tijdens de Apollo-vluchten in de 20e eeuw is materiaal van de Maan teruggebracht dat direct bestudeerd kan worden. Door radiometrische datering van dit materiaal is nu bekend dat de Maan 4527 ± 10 Ma oud moet zijn,[6] ongeveer 30 tot 55 Ma jonger dan de rest van het zonnestelsel.[7] Een andere bijzonderheid aan de Maan is dat ze een te lage dichtheid heeft om een grote kern van zware metalen te bezitten. De Maan verschilt daarmee van de andere terrestrische hemellichamen en heeft een vergelijkbare samenstelling als de mantel en korst van de Aarde samen, zonder de aardkern. Dit kan allemaal verklaard worden met een grote inslag waarbij een planetesimaal ter grootte van de pla-neet Mars (het hypothetische object wordt wel Theia of Orpheus genoemd) op de proto-Aarde insloeg, waarna de Maan ontstond door accretie van het weggeslagen materiaal.[8] Modellen die uitgaan van een kleine inslaghoek met de aardas voorspellen dat het materiaal dat de ruimte ingeslingerd werd en waaruit de Maan ontstond, afkomstig was van de mantel van het inslaande object en de mantel van de proto-Aarde, terwijl de metallische kern van het inslaande object door de aardmantel heen zonk en zich met de aardkern samen-voegde.[9] De inslaghypothese verklaart daarmee waarom de Maan een vergelijkbare samenstelling heeft als de korst en mantel van de Aarde samen en relatief weinig siderofiele elementen als ijzer of nikkel bevat.[10] Deze elementen waren al voor de inslag in de aard-kern gaan zitten, waardoor hiervan geen materiaal de ruimte ingeslingerd werd. Samengevat is de meest aanvaarde opsomming van ge-beurtenissen dat de Aarde al minstens 10 Ma bestond, waardoor een duidelijke differentiatie tussen kern en mantel was ontstaan, toen door een botsing met een andere proto-planeet materiaal uit de primitieve mantel de ruimte in geslingerd werd, waaruit de Maan ontstond. Men neemt aan dat de hoek v.d.Aardas met het baanvlak van de Aarde (23,5°, wat de seizoenen veroorzaakt) ook een gevolg van de inslag is. De inslag had een aantal belangrijke gevolgen voor de jonge Aarde. Ten eerste kwam bij de inslag een gigantische hoeveelheid energie vrij, waardoor zowel Aarde als Maan volledig gesmolten raakten. De aardmantel bestond uit een zeer snel convec-
terendemagma-oceaan. Ten tweede moet de Aarde, als ze voor de inslag al een atmosfeer had, deze compleet zijn kwijtgeraakt.[11]
Ontstaan van de atmosfeer en de oceanen
Omdat de Aarde geen atmosfeer meer had, ging het afkoelen snel. Aan de buitenkant moet binnen 150 Ma een eerste korst zijn ge-vormd, die de samenstelling van basalt moet hebben gehad. De tegenwoordige felsische continentale korst bestond nog niet. Binnen in de Aarde kon pas nadat de snel convecterende magma-oceaan ten minste gedeeltelijk gestold was, verdere differentiatie plaatsvinden. De mantel moet in het vroeg-archeïcum veel heter zijn geweest dan tegenwoordig, men schat 1600 °C rond 3 Ga, zodat ook toen nog een groot gedeelte gesmolten was. Nadat de Aarde verder afkoelde ontstond er opnieuw een atmosfeer, dit keer uit gassen afkomstig van vulkanisme en ontgassing van de mantel. De enorme hoeveelheid water op Aarde is een probleem: zoveel water kan namelijk niet alleen afkomstig zijn van dit vulkanisme en ontgassing. Men neemt daarom aan dat het voornamelijk afkomstig is van ijsmeteorieten
en kometen die in het Hadeïcum op Aarde insloegen.[12] Hoewel de meeste kometen zich tegenwoordig in banen ver buiten de baan v.
Neptunus bevinden, laten computersimulaties zien dat kometen in het begin juist vooral in de binnenste regionen van het zonnestelsel voorkwamen. Waarschijnlijk is het meeste water op Aarde echter afkomstig van grotendeels uit ijs bestaande planetesimalen uit de buitenste delen van het zonnestelsel.[13] Inslagen van dergelijke objecten op de terrestrische planeten (Mercurius, Venus, de Aarde en Mars) zullen deze planeten hebben verrijkt met water, koolstofdioxide, methaan, ammonia, stikstof en andere gassen. Aangenomen dat al het water in de oceanen hiervan afkomstig is, waren ongeveer een miljoen inslaande kometen nodig om de Aarde zijn huidige hoeveelheid water te geven. Dat lijkt veel, maar het is een redelijk aannemelijk aantal. Sinds de resultaten van de ruimtesonde Roset-ta wordt deze hypothese in twijfel getrokken.Water moet al rond 4,3 Ga in grote hoeveelheden over het Aardoppervlak gestroomd hebben. Aan het einde van het Hadeïcum, 3,8 Ga geleden, was het oppervlak van de Aarde dus in ieder geval al bedekt met oceanen.De nieuw ontstane atmosfeer bevatte methaan, ammonia, koolstofdioxide, stikstof en waterdamp. Zuurstof was afwezig, waardoor het tegenwoordige leven in deze atmosfeer niet had kunnen overleven. Door de afwezigheid van een ozonlaag stond het oppervlak boven-dien bloot aan intensieve ultraviolette straling.
Ontstaan van platentektoniek en continenten
De convectiestroming in de mantel, die tegenwoordig het proces van platentektoniek aandrijft, is het gevolg van de warmtestroom uit het binnenste v.de Aarde. Omdat de Aarde in het Hadeïcum veel heter was dan tegenwoordig, verliep deze convectie in die tijd snel-ler. Als destijds al platentektoniek plaatsvond (dat wil zeggen: tektonische platen ontstaan door oceanische spreiding op mid-oceani-sche ruggen en worden vernietigd door subductie bij subductiezones), zal ook dit proces veel sneller zijn gegaan dan tegenwoordig. Meestal wordt aangenomen dat er meer subductiezones waren waardoor de tektonische platen kleiner bleven. Van de eerste korst die na het afkoelen van de Aarde ontstond, is geen spoor meer te vinden. Door een combinatie van de snelle convectiestromen in de mantel en een bombardement van meteorieten (tijdens een periode die het Late Heavy Bombardment wordt genoemd) werd alle korst die tij-dens het Hadeïcum ontstond weer vernietigd. Men vermoedt dat de Hadeïsche korst basaltisch van samenstelling is geweest. Enige differentiatie met de mantel was wel mogelijk (zo zal er relatief minder van de elementen magnesium en ijzer in de korst hebben ge-zeten), maar de eerste continenten (bestaande uit lichter materiaal dat granitisch is van samenstelling) zullen pas rond 500 Ma na de vorming van de Aarde ontstaan zijn. Deze eerste stukken continentale korst die in het Archeïcum ontstonden en groeiden worden kra-
tons of schilden genoemd. Het ontstaan van de eerste continentale korst liet zo lang op zich wachten omdat er een verregaande diffe-rentiatie van magma voor moet plaatsvinden, waarvoor meerdere fases van opsmelten nodig zijn.De oudste gesteenten op Aarde zijn gevonden op het Canadees Schild. Dit gesteente is rond de 3,9 Ga oud en van samenstelling tonaliet. Het laat sporen zien van meta-morfose door hoge temperatuur, maar er worden ook sedimentair afgeronde korrels in gevonden, wat laat zien dat in die tijd rivieren en zeeën bestonden.[14] De Kratons bestaan overwegend uit twee typen gesteente. Ten eerste zijn er zogenaamde greenstone belts, bestaande uit licht gemetamorfoseerde sedimentaire gesteenten. Deze greenstones lijken op de sedimenten die tegenwoordig in ocea-nische troggenworden afgezet, boven subductiezones. Het voorkomen van greenstones wordt daarom soms als bewijs gezien dat er al platentektoniek plaatsvond in het Archeïcum. Het tweede type gesteente zijn complexen van felsische dieptegesteenten, vooral tona-liet, trondhjemiet en granodioriet (afgekort TTG). Deze TTG-complexen zouden overblijfselen van de eerste continentale korst kun-
nen zijn, die door differentiatie bij partieel smelten van basalt ontstonden. Archeïsche terreinen bestaan uit een afwisseling van TTG-complexen en greenstones. Hieraan denkt men te kunnen afleiden dat subductiezones veel meer voorkwamen in het Archeïcum, terwijl de TTG-complexen kleine proto-continenten vormden die met (ten opzichte van de tegenwoordige situatie) hoge snelheid over het Aardoppervlak bewogen. Stromatolieten aan de oever van Lake Thetis in West-Australië. Stromatolieten kunnen worden gevormd door koloniën van eencelligen zoals Cyanobacteria of groenwieren. De eencelligen leven in koloniën (algenmatten) waar deeltjes sediment in
worden ingevangen.De gedrapeerde lagen sediment die op deze manier ontstaan worden stromatolieten genoemd.Van Archeïsche stro-
matolieten wordt aangenomen dat ze door Cyanobacteria zijn gevormd,hoewel er weinig daadwerkelijke microfossielen in deze ge-steenten zijn gevonden. Het is mogelijk dat de oceanen in het Archeïcum en het Proterozoïcum vol lagen met dit soort algenmatten. Een mogelijke reden waarom de bacteriën in dit soort koloniën leefden was dat de organismen in het middelste gedeelte van de kolonie zo beschermd waren tegen uv-straling, die in die tijd nog tot het Aardoppervlak doordrong.
Ontstaan van het leven
Het is niet duidelijk hoe of waar het eerste leven ontstaan is. Men neemt aan dat het eerste leven ergens tussen 4,0 en 3,6 Ga op Aarde verscheen. Een kleine groep wetenschappers denkt dat het eerste leven op Aarde van buiten kwam, bijvoorbeeld met inslaande meteoren (exogenese). Een vergaand voorbeeld hiervan is de hypothese van panspermie.[15] De meeste geleerden denken echter dat het leven op Aarde is ontstaan. De manier waarop het is ontstaan is in beide gevallen hetzelfde. De oudste duidelijke sporen van leven zijn stromatolieten in gesteenten op het Australische Pilbara-kraton. Deze zijn rond de 3,5 Ga oud. Hoewel vaak is geclaimd dat bewijs is gevonden voor leven ouder dan 3,5 Ga,[16] wordt dit bewijs niet algemeen geaccepteerd.Levende wezens bestaan voornamelijk uit water en eiwitten, scheikundige ketens van aminozuren. Om zichzelf te kunnen voortplanten/vermenigvuldigen gebruikt leven DNA-moleculen en RNA-moleculen. Al deze organische moleculen komen in de natuur voor, en ook op andere plekken in het zonnestelsel zijn ze aangetroffen. Men neemt aan dat uit deze aminozuren op de een of andere manier een molecuul moet zijn ontstaan dat zichzelf kon reproduceren.De reproductie verliep niet altijd foutloos:soms werden kopieën gemaakt die zich niet meer konden reproduceren, waar-mee een eind kwam aan de keten. Een andere keer bevatten de kopieën juist verbeteringen op het origineel, waardoor ze zich makke-lijker konden handhaven. Deze zogenaamde chemische evolutie zou de voorloper zijn van de Darwinistische evolutie die tegenwoordig opgaat.[17] Hoe een zelfreproducerend molecuul ontstond, is een raadsel, hoewel er verschillende hypothesen zijn opgesteld. Een idee is dat de energie van vulkanisme, onweer en ultraviolette straling op geïsoleerde plekken reacties aandreef van simpele organische mo-leculen (zoals methaan) tot ingewikkeldere moleculen, waaronder veel belangrijke moleculen die in leven voorkomen.[18] Onder de aan-wezige moleculen kwamen ook katalysatoren voor, stoffen die reacties versnellen zonder zelf mee te reageren.De concentratie v.d.in-
gewikkeldere moleculen in deze "oersoep" werd steeds groter totdat een molecuul ontstond met de vreemde eigenschap dat het zich-zelf kon dupliceren, omdat het tegelijkertijd een katalysator was voor de reactie waarbij het zelf ontstond. In al het tegenwoordige leven wordt de eigenschap zichzelf te reproduceren vervuld door het molecuul DNA. DNA-moleculen vervullen echter alleen de functie van opslagplaats voor erfelijke informatie. Om het leven in stand te houden is energie nodig, deze wordt geleverd door de enzymati-sche activiteit van eiwitten. Het moderne leven heeft dus zowel eiwitten als DNA in één nodig. Dit probleem wordt opgelost door de hypothese van een RNA-wereld, die stelt dat er een tijd was waarin het leven bestond uit RNA-moleculen.[19] RNA is een molecuul dat, hoewel minder stabiel dan DNA, zowel enzymatische activiteit heeft als erfelijke informatie kan doorgeven. Ook andere molecu-len zijn aangewezen als kandidaten voor een zelfreproducerende molecuul die aan het leven voorafging. Op een zeker moment moet het stabielere DNA de rol van informatiedrager hebben overgenomen. De eerste levensvormen waren waarschijnlijk primitieve prokaryoti-
sche eencelligen. Prokaryoten zijn cellen zonder organellen zoals een celkern of mitochondriën. Het DNA ligt bij zulke organismen vrij in de cel, in plaats van in de celkern. Voorbeelden van tegenwoordige prokaryoten zijn bacteriën.
Proterozoïcum
Het Proterozoïcum is het eon dat van 2,5 Ga (of 2500 Ma) tot 541 Ma duurde. In het Proterozoïcum groeiden de kratons uit tot de grootte van de hedendaagse continenten. Voor het eerst is zeker dat platentektoniek plaatsvond. Een andere belangrijke ontwikkeling was de vorming van een zuurstofrijke atmosfeer door fotosynthetische bacteriën: de blauwalgen. Het leven ontwikkelde zich van pro-karyotische cellen tot eukaryoten en meercelligen. Tijdens het proterozoïcum was er een aantal keer een zware ijstijd, waarbij de Aarde helemaal of bijna helemaal bevroren was, dit noemt men snowball Earth. Daarna kwam de ontwikkeling van het leven in een stroomversnelling, de ediacarische fauna verscheen, die de opmaat zou zijn voor de cambrische explosie. De geschatte hoeveelheid zuurstof in de atmosfeer en in de oceanen in de loop van de geschiedenis van de Aarde. De tijdvakken in de grafiek zijn: 1: 3,85-2,45 Ga (Archeïcum); 2: 2,45-1,85 Ga; 3: 1,85-0,85 Ga; 4: 0,85-0,54 Ga; 5: vanaf 0,54 Ga (fanerozoïcum).[20] Een stuk van een banded iron formation afkomstig uit de 3,15 miljard jaar oude Moories Group van de Barberton Greenstone Belt, Zuid-Afrika. Rode lagen worden gevormd in tijden dat zuurstof aanwezig was, grijze lagen wanneer het niet aanwezig was.
De zuurstofcrisis
De eerste organismen zullen heterotroof geweest zijn en hun bouwstoffen uit organische moleculen hebben gehaald.[21] Al in het Ar-cheïcum (3,0 Ga) ontstonden er ook autotrofe organismen die door fotosynthese koolstofdioxide in zuurstof omzetten.[22] Het duur-de echter tot 2,3 Ga voordat zuurstof in grote hoeveelheden in de atmosfeer terechtkwam. Daar waren twee redenen voor:
*Zuurstof kon zich tijdens het Archeïcum makkelijk binden door allerlei oxiden te vormen met metalen als ijzer (chemische verwe-ring).[23]
*In het begin zal de vorming van zuurstof door fotosynthese minder snel zijn gegaan dan tegenwoordig het geval is.
Om een indruk van het belang van fotosynthese te geven: als er vanaf nu geen fotosynthese plaats zou vinden zou de totale hoeveel-heid zuurstof in de atmosfeer binnen 6 Ma verdwenen zijn door verwering en vulkanisme.[24] Met die kennis is het makkelijk voor te stellen dat de aardatmosfeer in het Archeïcum nauwelijks zuurstof bevatte, hetzelfde geldt voor de huidige atmosferen van Venus en Mars (op deze beide planeten is zuurstof zeldzaam), waar geen leven voorkomt dat voor fotosynthese zorgt. Op Aarde worden in sedimentaire gesteenten ouder dan 2,3 Ga mineralen als uraniniet en pyriet gevonden. Deze mineralen zouden als ze aan zuurstofrijke lucht blootstaan verweren, zodat we weten dat zuurstof in die tijd niet in grote hoeveelheden aanwezig kan zijn geweest.Een andere aanwijzing zijn banded iron formations, een type gesteente dat is ontstaan door het neerslaan van ijzer(III)oxide (Fe2O3) in zeewa-
ter. IJzer komt in water opgelost voor als ijzer(II)oxide (FeO). Als zuurstof in het water aanwezig is reageert dit met opgelost ijzer, waardoor het ijzer uit het water verdwijnt. Tegenwoordig is genoeg zuurstof (opgelost) in het zeewater aanwezig om ijzer(II)-oxide instabiel te maken. Banded iron formations jonger dan 2,3 Ga zijn dan ook zeldzaam, als ze voorkomen worden ze meestal verklaard door ongewone omstandigheden. Zuurstof opgelost in zeewater is in evenwicht met zuurstof in de atmosfeer. Daarom kan het op grote schaal voorkomen van banded iron formations ouder dan 2,3 Ga gezien worden als bewijs dat de atmosfeer in die tijd weinig zuurstof bevatte.[25] Toen de beschikbare metalen waarmee zuurstof kon reageren rond 2,3 Ga op waren ging de omschakeling naar een zuur-stofrijke atmosfeer opeens snel. Men noemt dit wel de zuurstofrevolutie of zuurstofcrisis.[26] De toegenomen hoeveelheid zuurstof had gevolgen voor het leven. De primitieve anaerobe organismen die voor fotosynthese zorgden waren namelijk niet gewend aan zuur-stof, dit was giftig voor hen. Toen de hoeveelheid zuurstof boven een bepaald niveau kwam, stierven deze organismen massaal, wat de hoeveelheid fotosynthese verminderde, zodat de hoeveelheid zuurstof in de atmosfeer weer afnam. Deze "stop" op de hoeveelheid zuurstof bleef een tijdje bestaan, tot zich rond 1,7 Ga organismen ontwikkelden die wel tegen zuurstof konden. Daarna kon de hoe-veelheid zuurstof verder toenemen.[27] Rond 1,5 Ga werd waarschijnlijk voor het eerst de tegenwoordige hoeveelheid zuurstof be-naderd.
Gevolgen: Snowball Earth en het ontstaan van de ozonlaag
Een belangrijk gevolg van grote hoeveelheden zuurstof in de atmosfeer was, dat een ozonlaag ontstond.Hierdoor werd het Aardopper-
vlak voortaan beschermd tegen uv-straling. Men neemt aan dat zonder ozonlaag de ontwikkeling van het leven erg beperkt zou zijn gebleven.[28] Een ander belangrijk gevolg van de zuurstofrevolutie was daarom dat het leven een nieuwe wending kon nemen en zich verder kon ontwikkelen naar steeds ingewikkeldere soorten. In het Archeïcum ontving de Aarde minder warmte van de Zon, omdat de Zon zwakker was. Dit heeft te maken met de ontwikkeling van de Zon, waardoor de luminositeit van de Zon elke miljard jaar toenam met 6%.[29] Het effect werd op Aarde opgeheven omdat de atmosfeer in het Archeïcum veel meer methaan bevatte. Methaan is een sterk broeikasgas, zodat het broeikaseffect in die tijd sterker moet zijn geweest. Zuurstof kon echter met methaan reageren, waar-door de hoeveelheid methaan in de atmosfeer afnam na de zuurstofrevolutie. Gevolg was dat de Aarde afkoelde. Inderdaad zijn bewij-
zen gevonden voor een sterke ijstijd rond 2,3 Ga (de Makganyene-ijstijd). Soms wordt aangenomen dat deze ijstijd (en misschien an-dere Proterozoïsche ijstijden) zo sterk was, dat de Aarde tot aan de evenaar bevroren was. Dit noemt men een snowball Earth. De ijstijd rond 2,3 Ga wordt meestal als een direct gevolg van de toegenomen hoeveelheid zuurstof in de atmosfeer gezien. Overigens wordt soms aangenomen dat er al eerder, tot in het late Archeïcum, ook ijstijden zijn geweest. Die oudere ijstijden zijn niet algemeen aanvaard wegens gebrek aan bewijs.
Ontwikkeling van het leven tijdens het Proterozoïcum
Een belangrijke stap in de ontwikkeling van het leven was het ontstaan van eukaryotische cellen.De oudste fossiele eukaryoten ontston-
den ongeveer 2,0 Ga geleden, hoewel het niet is uitgesloten dat eukaryoten al eerder ontstonden. Een eukaryoot is een cel met meer-dere organellen die elk een taak hebben. Daardoor kan een eukaryoot bijvoorbeeld veel effectiever energie omzetten dan een prokar-yoot. In een eukaryotische cel kan ook meer genetisch materiaal worden opgeslagen,wat grotere mogelijkheden voor ontwikkeling biedt.
Een nadeel is dat horizontale genoverdracht zoals die bij bacteria plaatsvindt,voor eukaryotische cellen vrijwel onmogelijk wordt. Euka-
ryotisch leven kan daardoor alleen via Darwiniaanse evolutie evolueren. De voordelen wogen echter ruim op tegen de nadelen. Er ont-stonden grotere organismen en al snel ontwikkelden zich de eerste meercelligen (rond 1,7 Ga). Er ontstonden nu ook voedselketens, waarin grotere organismen zich voedden met kleinere. De tegenwoordig algemeen aanvaarde endosymbiontentheorie gaat ervan uit dat
eukaryotische cellen zich ontwikkelden uit prokaryoten die in symbiose leefden, waarbij elke prokaryoot een eigen functie had. De ont-wikkeling raakte op een moment in een stadium waarin de prokaryoten niet meer zonder elkaar konden. Deze prokaryoten zijn daarna verder ontwikkeld tot de organellen van een eukaryotische cel. Het is niet duidelijk of het ontstaan van eukaryotische cellen verband had met de zuurstofcrisis, maar wel dat eukaryoten enorm profiteerden van de grotere concentratie zuurstof. Doordat eukaryoten
mitochondriën hebben kunnen ze meer energie uit zuurstof halen. Vreemd genoeg duurde het daarna nog een miljard jaar voordat de volgende belangrijke stap gezet werd.
Rodinia en andere supercontinenten
Toen rond 1960 de theorie v.d.platentektoniek werd ontwikkeld, was het eenvoudig reconstructies te maken hoe de continenten vroeger ten opzichte van elkaar lagen. Dit ging op tot ongeveer 200 Ma geleden, rond die tijd bleken alle continenten aan elkaar te hebben ge-legen (een zogenaamd supercontinent, dit wordt Pangea genoemd). Wat de posities voor 200 Ma waren kon niet met de huidige bewegin-gen worden berekend. Het berekenen van de oudere bewegingen van continenten gebeurt daarom met behulpvan paleomagnetische data.
[30] De continenten blijken af en toe samen te komen tot een supercontinent, dan weer uit elkaar te bewegen. Deze zich herhalende cyclus wordt een Wilsoncyclus genoemd. Hoe verder terug in de tijd, hoe schaarser en moeilijker te interpreteren de data worden. Duidelijk is in ieder geval dat rond 830 Ma een supercontinent bestond, dat Rodinia wordt genoemd. Het is waarschijnlijk dat Rodinia niet het eerste supercontinent was, er wordt een aantal andere supercontinenten eerder in het Proterozoïcum verondersteld. Dat betekent dat platentektoniek gedurende het Proterozoïcum op min of meer dezelfde manier moet hebben plaatsgevonden als tegen-woordig. Na het opbreken van Rodinia rond 750 Ma werd met de Pan-Afrikaanse orogenese rond 700 Ma waarschijnlijk opnieuw een su-percontinent gevormd, dit wordt Pannotia genoemd. Het zou rond 540 Ma weer uit elkaar vallen. Belangrijk is in ieder geval dat van 800 tot 550 Ma het merendeel van de continentale massa bij elkaar lag.[31]
Laat-Proterozoïsche Sneeuwbalaarde en Ediacarische fauna
Aan het einde van het Proterozoïcum is de Aarde vermoedelijk minstens twee keer door een wereldwijde ijstijd gegaan, een Sneeuw-balaarde. Dit gebeurde rond 710 Ma (de Sturtien-ijstijd) en 640 Ma (Marinoan-ijstijd).[32] De periode waarin het gebeurde wordt
Cryogenium genoemd. In tegenstelling tot de ijstijd rond 2,3 Ga, die waarschijnlijk het gevolg was van de zuurstofcrisis, is de oorzaak hiervoor dit keer minder duidelijk. De meest aanvaarde theorie is dat de afkoeling van het klimaat te maken had met het ontstaan van het supercontinent Rodinia. Belangrijk was dat dit supercontinent zich in de tropen bevond, waar het klimaat warm en nat is vergeleken met hogere breedtegraden. Dit zorgde voor een ongekende toename in wereldwijde chemische verwering, waarbij koolstofdioxide uit de atmosfeer verdween. Aangezien koolstofdioxide een belangrijk broeikasgas is werd het klimaat kouder. Op dezelfde manier wordt aangenomen dat de Aarde weer ontdooide doordat in bevroren toestand op Aarde maar zeer weinig chemische verwering kon plaats-vinden. Tijdens de Sneeuwbalaarde nam de hoeveelheid koolstofdioxide in de atmosfeer langzaam toe, tot een zekere drempelwaarde was overschreden en de temperatuur weer zo hoog was, dat het ijs begon te smelten. Een probleem is dat niet duidelijk is hoe leven in een geheel bevroren oceaan kon overleven. Vóór de genoemde twee ijstijden bestonden al diverse soorten eukaryotische organismen zoals roodalgen of bruinalgen, die ook tegenwoordig nog voorkomen. Als zulke organismen konden overleven moeten er open plekken in het ijs op de oceanen zijn geweest. Daarom worden tegenwoordig modellen gebruikt, waarin de Aarde niet compleet bevroren was, dit wordt "Natte Sneeuwbalaarde" of "Slushball Earth" genoemd. Op het Cryogenium volgde het Ediacarium, een periode die werd geken-merkt door een snelle ontwikkeling van het leven. Rond 575 Ma ontstonden een groot aantal nieuwe soorten en kwam de evolutie van het leven in een stroomversnelling terecht. Het verband tussen de ontdooiing van de Aarde en het ontstaan van vele nieuwe soorten is nog onduidelijk, maar toeval lijkt het niet. De nieuwe levensvormen (Ediacarische biota genoemd) waren veel diverser en complexer dan ooit, tegenwoordig wordt vrij algemeen aanvaard dat dit de voorouders van de Cambrische levensvormen zijn. Hoewel er over deze organis-men nog veel onduidelijk is,lijken de rijken van de taxonomie allemaal al aanwezig in primitieve vormen:er zijn bijvoorbeeld Ediacarische
fossielen die bij de dieren kunnen worden ingedeeld.[33]Belangrijke ontwikkelingen waren het ontstaan van spiercellen en zenuwcellen. De overgang van Proterozoïcum naar Fanerozoïcum en Ediacarium naar Cambrium vond plaats toen er voor het eerst harde organen ontwikkeld werden.
Paleozoïcum
Het Paleozoïcum, het tijdperk van het oude leven, was een tijd waarin moderne levensvormen ontstonden. Een belangrijke ontwikkeling was dat eerst planten en daarna dieren zich ook op het land begaven. De explosieve ontwikkeling van nieuwe soorten en periodes van massale uitsterving wisselden elkaar af. Tegenwoordig wordt steeds duidelijker dat zulke gebeurtenissen gevolg waren van veranderin-gen in leefomgeving of grote catastrofes zoals klimaatveranderingen, meteorietinslagen en grote vulkaanuitbarstingen. De continenten die bij het opbreken van Pannotia waren ontstaan, zouden tijdens het Paleozoïcum weer langzaam naar elkaar toebewegen. Dit leidde tot twee grote fasen van gebergtevorming, de Caledonische en Hercynische orogeneses, waarbij uiteindelijk een nieuw supercontinent,
Pangea, werd gevormd.Een fossiel van de Cambrischetrilobiet Estaingia Bilobata, gevonden op Kangaroo-eiland, Australië. Foto is onge-
veer 7 cm lang. Trilobieten zijn een uitgestorven soort geleedpotigen uit het Paleozoïcum. Vanaf het Cambrium is de ontwikkeling van het leven veel beter bekend dan ervoor, omdat er soorten met harde skeletten ontstonden.
Cambrische explosie
De snelle ontwikkeling van het leven bereikte in het Cambrium (541-485 Ma) haar hoogtepunt. Het ontstaan van grote hoeveelheden nieuwe soorten, stammen en vormen in deze periode wordt wel de Cambrische explosie genoemd. De snelheid van de evolutie is in deze periode groter dan ooit ervoor of erna.[34] De meeste stammen die tegenwoordig voorkomen waren er al aan het einde v.h.Cambrium. Er ontstonden levensvormen met harde organen zoals schaaldieren (bijvoorbeeld mollusken of zee-egels), zeelelies en geleedpotigen
(bijvoorbeeld trilobieten). Omdat harde botten of schelpen veel beter bewaard blijven dan zacht weefsel, weten we van de ontwikke-ling vanaf het Cambrium veel meer, dan van ervoor.[35] De overgang tussen Cambrium en Ordovicium (485-443 Ma) wordt gekenmerkt door een massa-extinctie, waarbij een groot aantal van de nieuwe levensvormen weer verdween.[36] Van sommige Cambrische soorten is nog weinig bekend. Voorbeelden van vreemde Cambrische dieren zijn Anomalocaris en Haikouichthys. Ook waren in het Cambrium vissen
ontstaan, de eerste gewervelden.[37] De waarschijnlijke voorouder van de vissen was Pikaia, het eerste dier met een primitieve soort
notochord, een structuur die later tot een wervelkolom kan zijn geëvolueerd. In het Ordovicium ontstonden de eerste kaakvissen. Bij het ontstaan van nieuwe nichen in voedselketens komt er reuzengroei voor. Zo ontstonden in het vroege Paleozoïcum steeds grotere vissen, zoals de enorme placoderm Dunkleosteus, die 7 meter lang kon worden. Het supercontinent Pangea, dat ontstond in het Late Paleozoïcum. De ligging van de kustlijnen van huidige continenten zijn aangegeven.
De Caledonische en Hercynische gebergtevormingen: naar een nieuw supercontinent
Ondertussen was het supercontinent Pannotia aan het begin van het Cambrium opgebroken in de continenten Laurentia, Baltica en Gon-
dwana. In perioden dat continenten uit elkaar bewegen wordt veel oceanische korst gevormd. Omdat jonge oceanische korst relatief warm en licht is, zal de oceaanbodem in zo’n tijd hoger liggen, waardoor de zeespiegel stijgt. Dit was het geval in het eerste deel van het Paleozoïcum.Over het algemeen was het klimaat in het eerste gedeelte van het Paleozoïcum warmer dan tegenwoordig, maar aan het einde van het Ordovicium kwam een ijstijd voor, een periode waarin op de continenten gletsjers te vinden waren, net als tegenwoordig het geval is. Een van de oorzaken was dat Gondwana zich in die tijd gedeeltelijk op de Zuidpool bevond. Sporen van gletsjers uit deze tijd worden alleen op Gondwana gevonden.Tijdens deze ijstijd vonden weer een aantal massa-extincties plaats,waarbij soorten brachio-poden, trilobieten, bryozoën en koralen verdwenen. De oorzaak moet liggen in de daling van de temperatuur van het zeewater.[38] Na de uitsterving konden nieuwe soorten ontstaan, diverser en beter aangepast, die de niches die uitgestorven soorten achterlieten opvul-den.Tussen 450 en 400 Ma botsten de continenten Laurentia en Baltica op elkaar, dit heet de Caledonische gebergtevorming. Er ont-stond een hooggebergte waarvan sporen nog te vinden zijn in Scandinavië, Schotland en in de Amerikaanse Appalachen. In het Devoon
(419-359 Ma) bewogen ook Gondwana en Siberia naar de twee samengevoegde continenten toe, wat zou leiden tot de Hercynische ge-bergtevorming. Sporen van deze gebergtevorming zijn in heel Zuid- en Midden-Europa nog te vinden. Door de gebergtevorming werd in het Carboon (359-299 Ma) het laatste supercontinent, Pangea, gevormd.Landschap op de planeet Mars. Gedurende het grootste ge-deelte van de Aardse geschiedenis kwamen geen planten voor op het land en moet de Aarde er vergelijkbaar hebben uitgezien.
Opkomst van de landplanten
Tijdens de zuurstofrevolutie in het Proterozoïcum ontstond de ozonlaag die de ultraviolette straling van de Zon tegenhoudt.Eéncelligen die het land bereikten kregen daardoor hogere overlevingskansen. Prokaryoten hadden waarschijnlijk al rond 2,6 Ga via rivieren en later vochtige milieu’s op het land leren overleven.[39] De continenten bleven echter tot halverwege het Paleozoïcum vrijwel 'kaal'. De oudste fossielen van op het land levende schimmels en planten zijn ongeveer 480-460 Ma oud, hoewel schimmels misschien al rond 1000 Ma op het land voorkwamen en planten rond 700 Ma.[40] In het Ordovicium en Siluur (443-419 Ma) werden de randen van het land be-volkt door kleine meercellige planten (vergelijkbaar met algen en schimmels), langzaam verspreidden deze eerste landplanten zich ver-der van het water af.[41] In tegenstelling tot waterplanten moeten landplanten om rechtop te kunnen staan een stevige stam hebben en een wortelstelsel, dat ook dient om voedsel op te nemen uit de bodem. De eerste planten die een stam hadden, ontstonden in het Siluur. In het vroege Devoon ontstonden de eerste vaatplanten, zoals Rhynia en Baragwanathia, de grootste planten konden een meter hoog worden. In het late Devoon bestonden al planten die de grootte van tegenwoordige bomen konden aannemen, zoals de 30 m hoge Ar-
chaeopteris. Al deze soorten waren nog sporenplanten, zaadplanten zouden pas in het begin van het Carboon (rond 360 Ma) ontstaan. De ontwikkeling van zaden zorgde ervoor dat planten zich effectiever over de continenten konden verspreiden.[42] Gedurende het Devoon en Carboon was het eustatische zeeniveau hoger en het klimaat warmer dan tegenwoordig. Veel van de continenten bestonden uit drasland. Het lijkt erop dat de planten hiervan geprofiteerd hebben. Grote delen van de wereld waren tijdens het Carboon bedekt met moerassen, waar planten als Lepidodendron, Sigillaria, of enorme paardenstaarten groeiden. Uit de moerassen van het Carboon is het grootste gedeelte van de steenkoollagen op de wereld gevormd. Tegelijkertijd was het Carboon ook een periode van uitersten: hoe-wel de tropen een zeer warm klimaat hadden, lagen op het zuiden van Gondwana gletsjers (de zogenaamde Karoo-ijstijd). Men neemt aan dat de uitgestrekte bossen in de tropen door fotosynthese zoveel kooldioxide uit de atmosfeer onttrokken dat het broeikasef-fect verzwakt werd waardoor in de poolgebieden een ijstijd heerste. In het Perm (299-252 Ma) vormden alle continenten samen het
supercontinent Pangea. Op zo’n enorme landmassa heerst een extreem landklimaat, veel droger dan in het Carboon. In grote delen van
Europa komen uit deze tijd evaporietafzettingen voor, die gevormd zijn in grote zoutmeren. Het zout dat in Slochteren wordt gewon-nen is bijvoorbeeld in dit tijdperk afgezet. Andere typische afzettingen uit het Perm en het erop volgende Trias zijn zandsteen en
conglomeraat, de afbraakproducten van de Hercynische en Caledonische gebergten. Evolutie van tetrapoden in het Laat-Devoon. Af-stammelingen van pelagische Sarcopterygii als Eusthenopteron ondergingen een stapsgewijze evolutie: Panderichthys kon in modderig
ondiep water leven; Tiktaalik had poot-achtige vinnen waarmee hij het land op kon; Acanthostega had poten met acht tenen, Ichthyo-
stega had volgroeide poten. Ook coelacanten stammen van de Sarcopterygii af, zij bleven in de diepzee leven.
Dieren koloniseren het land
Het oudste duidelijke bewijs dat insecten op het land voorkwamen is rond 450 Ma oud.[43] Er zijn aanwijzingen dat insecten al rond 530 Ma op het land voorkwamen.[44] Dankzij de inmiddels grote hoeveelheden planten op het land was er geen gebrek aan voedsel.
Rond 380 Ma ontwikkelden de eerste amfibieën zich uit vissen, doordat zich poten uit vinnen ontwikkelden. Poten staan een dier toe zich af te zetten om zijn kop boven water te steken. Men vermoedt daarom dat amfibieën ontwikkelden uit soorten vissen die in ano-xisch water leefden of kleine prooidieren achtervolgden in zeer ondiep water.[45] Eenmaal in staat boven water adem te halen konden deze vroege amfibieën zich ook gedurende korte perioden op het land begeven, vermoedelijk raakten bepaalde soorten zo aangepast dat ze steeds langer boven water door konden brengen, hoewel ze hun eieren nog steeds in het water moesten leggen. Ongeveer 20 mil-
joen jaar later (340 Ma, in het Vroeg-Carboon) ontwikkelden zich soorten (zogenaamde amniota) die eieren konden leggen met een har-de schaal, waardoor ze zich volledig op het land konden voortplanten.[46] De amniota zouden rond 310 Ma uitsplitsen in synapsiden
(waaruit later de zoogdieren zouden evolueren) en sauropsiden (reptielen waaruit later onder andere de dinosauriërs en vogelszouden ontstaan).[47] Op de overgang v. Paleozoïcum naar Mesozoïcum (252 Ma) vond de grootste massa-extinctie uit de Aardse geschiedenis
plaats. Schattingen geven aan dat in deze Perm-Trias-massa-extinctie ongeveer 95% van alle soorten uitstierf. Er zijn twee hypothesen waarom deze gebeurtenis plaatsvond: de vulkanische uitbarsting van de Siberische Trappen en een grote inslag van een meteoriet.
Mesozoïcum
Twee soorten dinosauriërs uit het Boven-Juravan Duitsland. Twee (volwassen dier met jong) sauropoden van de soort Europasaurus hol-geri en een groep Iguanodons. Tekening door Gerhard Boeggemann. Het Mesozoïcum, de era van het midden-leven, was de tijdspanne waarin de dinosauriërs de Aarde bevolkten. Het was een periode met een relatief hoog eustatisch zeeniveau en warm klimaat. Geduren-de het Mesozoïcum bewoog het supercontinent Pangea uit elkaar waarbij de huidige continenten ontstonden.
Opbreken van Pangea
Het opbreken v.Pangea begon in feite al in het Perm met de vorming van extensionele bekkens en later riften. Gedurende het grootste
deel van het Trias bleef Pangea nog min of meer intact en op zijn plaats. Er kan echter pas in het Jura echt gesproken worden van los-komen van de continenten. Het riften begon door het openen van de noordelijke Atlantische Oceaan tussen Noord-Amerika en Europa.
Noord- en Zuid-Amerika bleven echter aan elkaar zitten, eerst opende de Tethysoceaan tussen Afrika en Laurazië verder. In het zui-den begon ook Gondwana op te breken, toen India, Australië en Antarctica losbraken van Afrika en Zuid-Amerika. Vulkanisme zorgde voor de aanmaak van jonge en relatief lichte oceanische korst, waardoor de zeespiegel tijdens het Jura steeg en in het Krijt hoog bleef. Grote delen van de continenten stonden tijdens deze twee perioden onder water. Tijdens het Krijt vorderde het uiteenvallen van Pangea snel. De noordelijke Atlantische Oceaan werd steeds breder en nu begon ook de zuidelijke Atlantische Oceaan tussen Zuid-Amerika en Afrika te openen. Ten slotte opende ook de Noordelijke IJszee tussen Groenland en Scandinavië zich. Tegelijkertijd be-woog India los van Australië om naar het noorden richting Eurazië te gaan bewegen. Door opheffing van de riftschouders kwamen sinds het riften begon veel kustzones omhoog. De bergen in Noorwegen, Schotland, en langs de Braziliaanse oostkust zijn bijvoorbeeld om-hoog gekomen tijdens de vorming van de Atlantische Oceaan.De westrand van Noord-Amerika was vanaf het Mesozoïcum een actieve
continentale marge waarlangs vulkanisme in eilandenbogen plaatsvond.
De tijd van de dinosauriërs
Het Mesozoïcum was de tijd van de dinosauriërs. Deze ontwikkelden zich in het Vroeg-Trias (230 Ma) uit de reptielen.Hoewel ook zoog-dieren zich verder ontwikkelden in het Mesozoïcum, waren deze niet groot en vergelijkbaar met hedendaagse spitsmuizen.[48] In het Krijt ontwikkelden de eerste vogels zich uit kleine soorten dinosauriërs, vaak wordt de 150 Ma oude Archaeopteryx als de eerste vogel beschouwd.[49] Een andere belangrijke ontwikkeling tijdens het Krijt (rond 132 Ma[50]) was de verschijning van bedektzadigen. Tot die tijd domineerden naaktzadige planten, die geen echte vruchten hebben. Veel bedektzadigen zijn voor de bestuiving van hun bloemen afhankelijk van insecten, en er trad co-evolutie op waarbij vele nieuwe soorten insecten en bedektzadigen ontstonden. Artistieke im-
pressie van de meteorietinslag op de Krijt-Tertiair-overgang. De inslag zou volgens veel geleerden het uitsterven van de dinosauriërs hebben veroorzaakt.De concurrentie met vogels zorgde waarschijnlijk tijdens het Krijt voor de teruggang van de pterosauriërs en de overige dinosauriërs waren vanwege uiteenlopende redenen waarschijnlijk ook op hun retour toen 65 Ma geleden een naar schatting 10 tot 30 km grote meteoriet insloeg op Yucatán. De inslag moet grote hoeveelheden stof en gas de atmosfeer ingeblazen hebben die het zonlicht verduisterden waardoor fotosynthese onmogelijk werd en veel planten afstierven.[51]Dit zorgde voor de Krijt-Tertiair-massa-
extinctie, waarbij behalve de dinosauriërs ook een groot aantal andere soorten, waaronder de ammonieten uitstierven. Deze massa-extinctie vormt het einde van het Mesozoïcum.
Cenozoïcum
Het Cenozoïcum, de era van het nieuwe leven, is de era waarin we ons nu bevinden en waarin de zoogdieren begonnen te domineren en uiteindelijk de mens opkwam. Na het einde van het Krijt koelde de Aarde af en daalt het zeeniveau tijdens het Paleoceen. Het daarop-volgende Eoceen werd juist gekenmerkt door een warmer klimaat. In deze periode braken de continenten Antarctica en Australië ten slotte los van elkaar, waardoor er rond 35 Ma een circumpolaire zeestroming rond Antarctica ontstond. Door de geïsoleerde positie van dit continent op de geografische zuidpool, raakte het bedekt met een permanente ijskap, waardoor het eustatische zeeniveau na het Eoceen weer daalde.
Alpiene gebergtevorming
In het Cenozoïcum vonden twee belangrijke fases van gebergtevorming plaats. De vorming v.de Amerikaanse cordillera's (de Laramide-
orogenese waardoor de Rocky Mountains zijn ontstaan)was al begonnen in het Mesozoïcum en is een voortdurend proces dat tegenwoor-
dig doorgaat. Daarnaast zorgde de noordwaartse beweging van Afrika en India voor het sluiten van de Tethysoceaan en uiteindelijk de Alpiene orogenese, waarbij een groot aantal gebergten werd gevormd, van de Atlas en de Pyreneeën in het westen tot de bergen in
Zuidoost-Azië in het oosten, waaronder ook de Alpen, Zagros en Himalaya's. De vorming van deze gebergten vond plaats in de afgelopen 50 miljoen jaar, in het oosten door de collisie van Azië met het Arabisch Schiereiland en India, in het westen door het naar elkaar toe bewegen van Afrika en Europa, waarbij een aantal microcontinenten (zoals Apulia, dat uit de "laars" van Italië bestaat) dat tussen de twee in lag met Europa collideerde. Ook tegenwoordig gaat deze fase van gebergtevorming nog door. Onder de paardachtigen ontwik-
kelden zich, net als bij veel andere groepen zoogdieren, in de loop van het Tertiair grotere soorten.
Evolutie van zoogdieren
Synapsiden, de voorouders van de zoogdieren, verschenen al in het Perm. Men neemt aan dat de dominantie van de dinosauriërs de ont-wikkeling van zoogdieren in het Mesozoïcum heeft tegengehouden. Nadat de dinosauriërs uitstierven en het klimaat in het Paleoceen kouder werd, waardoor zoogdieren een voordeel hadden ten opzichte van koudbloedige dieren, raakte hun evolutie in een fase van snel-le radiatie. Er ontstonden steeds grotere soorten. De laatste gemeenschappelijke voorouder van alle primaten leefde waarschijnlijk rond 63 Ma, slechts 2 miljoen jaar na het uitsterven van de dinosauriërs.[52] Tijdens het Laat-Eoceen (rond 34 Ma) keerden sommige zoogdieren terug naar het water waar ze weer vinnen ontwikkelden. Een voorbeeld is Basilosaurus, de dolfijnen en walvissen stammen van soortgelijke dieren af.
De Kwartaire ijstijden
Hoewel de Zuidpool al zo'n 25 miljoen jaar bedekt is met een ijskap, raakte de geografische noordpool pas rond 2,5 Ma geleden per-manent met zee-ijs bedekt. Dit markeert het begin van het Kwartair, het jongste geologische tijdperk, dat tot op heden voortduurt. In de jongste 2,5 miljoen jaar heeft de Aarde afwisselend tijden van koudere en minder koude wereld-klimaatgemiddelden gekend. Deze tijdvakken worden glacialen en interglacialen genoemd. Tegenwoordig bevindt de Aarde zich in een interglaciaal, dat het Holoceen ge-
noemd wordt (de laatste 11.700 jaar, geteld in Groenlandse ijskap-jaarlaagjes). Gedurende deze glacialen groeiden grote ijskappen op de landmassa's rondom de noordpool (Noord-Amerika, Noord-Europa). In interglacialen smolten deze grotendeels af, op enkele relic-tijskappen nabij de noordpool na (Groenland). Afwisselingen tussen glacialen en interglacialen vonden met regelmaat plaats. Al miljoenen jaren schommelt het klimaat iedere 40.000 jaar tussen een koude- en een warmtemaximum. Dit wordt veroorzaakt door periodieke ver-anderingen in de ellipsiteit van de aardbaan om de zon en de hoek van de rotatieas van de aarde (Milanković-parameters). In de laatste miljoen jaar, was er iedere 100.000 jaar een extreem koudemaximum (bv. het laatste glaciaal), en zo'n 20.000 jaar daarna een relatief warme interglaciaal (bv. het Holoceen). Daarvoor waren de klimaatverschillen tussen glacialen en interglacialen minder uitgesproken.
Het herhaaldelijk sterk afkoelende en weer opwarmende klimaat heeft een grote invloed gehad op de evolutie van zowel de mens als andere soorten op het Noordelijk halfrond. Klimaatzones en bijbehorende ecosystemen verschoven naar het zuiden, telkens als het klimaat kouder werd. Overlevende soorten moesten meeëmigreren of zich evolutionair aanpassen. Voorbeelden van dieren die zich aan-gepast hadden aan ecosystemen van het koude klimaat (steppe, toendra) zijn bijvoorbeeld mammoeten (Mammuthus) of de wolharige neushoorn (Coelodonta antiquitatis). Omgekeerd geldt dit ook voor perioden van opwarmend klimaat. Opportunistische soorten uit het zuiden verdrongen aan koude aangepaste soorten naar het noorden. Veel grote zoogdiersoorten stierven uit aan het einde v.het laatste
glaciaal (50.000-12.000 jaar geleden). De oorzaak van deze golf van uitstervingen is niet eenduidig. Veel van de uitgestorven soorten leefden op de zogenaamde mammoetsteppe. Dit bioom, dat zich kenmerkte door een zeer hoge plantaardige productie (grassen) en veel begrazers (herbivore zoogdieren), verdween snel vanaf 30.000 jaar geleden, zowel in Noord-Amerika als in Eurazië. Veel diersoorten die in dit bioom leefden, zijn daarbij uitgestorven.[53][54] Het bioom was in de glacialen van de laatste miljoen jaar ontstaan, en het is onbekend hoe het zich in eerdere interglacialen wel heeft kunnen handhaven. Een populaire verklaring voor het uitsterven van vooral de grootste zoogdieren is dat dit veroorzaakt zou zijn door overbejaging door de mens. Een argument zou zijn dat deze diersoorten eer-dere klimaatsveranderingen overleefd hadden, en dat de mens rond deze tijd een belangrijke factor geweest zou zijn. Hoewel de mens zeker op de dieren van de mammoetsteppe gejaagd zal hebben, zijn zoogdierpalaeontologen van mening dat zij geen doorslaggevende factor in het uitsterven geweest zijn. Het verdwijnen van de mammoetsteppe en daarmee het wegvallen van de belangrijkste voedsel-bron is zeker wel een oorzaak geweest.
Evolutie van de mens
De laatste gemeenschappelijke voorouder van mensen, bonobo's en chimpansees leefde rond zes miljoen jaar geleden.[55] Vrij kort daarop leerden enkele van zijn afstammelingen rechtop, op twee benen, te lopen.[56] De herseninhoud nam toe en rond 2,0 Ma geleden verschenen de eerste individuen van het geslacht Homo.[18] Mogelijk tussen 1,5 en 1 miljoen jaar geleden leerden de eerste mensen
vuur te gebruiken (waarschijnlijk Homo erectus of Homo ergaster). Het vroegste gebruik van vuur zal onderwerp van onderzoek blijven, maar vanaf zo'n 400.000 jaar geleden is het gebruik van vuur ondubbelzinnig en wijdverspreid. Minder duidelijk is of Homo erectus kon spreken of dat spraak zich pas in de vroege moderne mens ontwikkelde.[57] Anatomisch was de neanderthaler in staat om te spreken maar of zij dat ook daadwerkelijk deden is onbekend. Door de steeds grotere herseninhoud en grootte van de schedel moesten baby's steeds jonger geboren worden om met hun hoofd door het bekken te kunnen. Jonger geboren worden heeft als voordeel dat individuen een hogere neuroplasticiteit hebben en intelligenter zijn, het nadeel is dat kinderen een langere afhankelijke periode nodig hebben om volwassen te worden. Sociale vaardigheden en taal werden complexer en gebruiksvoorwerpen ingewikkelder.[58] De vroegste fossiele resten van de moderne mens (Homo sapiens sapiens) zijn mogelijk circa 300.000 jaar oud.[59] De neanderthalers zijn de eerste mensen van wie bewezen is dat ze spiritualiteit kenden: ze begroeven hun doden, vaak samen met voedsel en gebruiksvoorwerpen.[53][60] In het laatste glaciaal verscheen in Europa de vroege moderne mens, die ingewikkeldere uitingen van cultuur had. De vroegste rotsteke-
ningen, waarschijnlijk met magische of religieuze betekenissen zijn 32.000 jaar oud. De moderne mens liet ook beeldjes achter zoals de Venus van Willendorf. Rond 11.000 jaar geleden had Homo sapiens de zuidelijkste punt van Zuid-Amerika bereikt en bewoonde hij vrijwel de gehele Aarde.[61] De mens heeft in de relatief korte tijd dat hij bestaat een enorme invloed op de landverdeling en ecosy-stemen op Aarde uitgeoefend.
Menselijke beschaving
Meer dan 90% van de tijd dat de moderne mens bestaat, leefde hij in kleine groepen jager-verzamelaars.[62] Doordat mensen de mo-gelijkheid hadden informatie (bijvoorbeeld in de vorm van memes) aan de volgende generatie door te geven ging de culturele evolutie
steeds sneller. Rond 10.000 jaar geleden begonnen de bewoners van de Vruchtbare Sikkel de domesticatie van dieren en planten, wat leidde tot een grote verandering in levensstijl, die de Neolithische Revolutie wordt genoemd.[63] Met zijn nieuwe levensstijl kreeg de mens een enorme invloed op andere soorten en, door het grootschalig ontbossen om nieuw landbouwgebied te krijgen zelfs op het kli-maat. Zo is het aandeel broeikasgassen (vooral methaan, maar ook koolstofdioxide) met hun grote invloed op het klimaat al rond de introductie van de landbouw (in afwijking met eerdere interglacialen) gaan stijgen.[64] Hoewel de mens in geïsoleerde gebieden waar weinig domesticeerbare planten konden groeien nomadisch bleef, ontstonden elders permanente woonplaatsen. Dankzij steeds effec-tievere landbouwmethoden konden steeds meer mensen samenleven op kleine oppervlakten, waardoor georganiseerdere vormen van samenleving nodig werden waarin arbeidsdeling optrad. Het overschot aan voedsel maakte een heersende klasse mogelijk, en de eers-te beschavingen ontstonden in Egypte, China, de Indusvallei en Mesopotamië rond 6000 jaar geleden.[65] Door de ontwikkeling van het
schrift kon informatie nog effectiever worden doorgegeven. Omdat de mens niet langer al zijn tijd in het verzamelen van voedsel hoef-de te steken[noot 1] kon hij zich gaan bezighouden met ontwikkeling van religie, technologie en de eerste wetenschap. Beschavingen ontstonden overal ter wereld en dreven onderling handel of voerden oorlogen. De groei van de menselijke kennis en technologie ging gestaag door, maar raakte in Europa in een stroomversnelling met de wetenschappelijke revolutie en later de industriële revolutie.[66]
Dit leverde de bewoners van dit continent gedurende enkele eeuwen dominantie over de rest van de wereld op,[67] maar deze dominan-tie verdween weer tijdens de 20e eeuw. Tegelijkertijd zorgden de nieuwe technologieën voor een explosieve bevolkingsgroei, waardoor de wereldbevolking tussen 1750 en 2000 toenam van nog geen 800 miljoen tot 6 miljard.[68] De mens krijgt door bevolkingsgroei en nieuwe technologieën een steeds grotere invloed op de chemische, klimatologische en ecologische processen op Aarde. Door de globa-lisering en toegenomen internationale samenwerking raken de verschillende menselijke culturen over de hele wereld tegelijkertijd steeds afhankelijker van elkaar en is ook, ondanks verzet van conservatieve en fundamentalistische groeperingen, een toenemende versmelting van deze culturen waar te nemen.
Zie ook
Bronnen en verwijzingen
Voetnoten
-
Omhoog↑ Overigens gold dit nog lange tijd niet voor het overgrote deel van de mensheid die als landbouwer, veeteler, of - nog steeds - als jagers-verzamelaars een dagelijkse strijd om genoeg voedsel te verkrijgen voor de basisbehoeften moesten leveren. Alleen de heersende elite had, naast hun strijd om de macht in handen te houden, tijd over om zich ook aan andere zaken te kunnen wijden.
Verwijzingen
-
Omhoog↑ Allègre et al. (1995)
-
Omhoog↑ (en) NASA; 2003: New Image of Infant Universe Reveals Era of First Stars, Age of Cosmos, and More. [1]
-
Omhoog↑ Best (2003), pp 612-613; zirkonen in de Acasta Gneiss zijn gedateerd op 4030 miljoen jaar door o.a. Stern & Bleeker (1998)
-
Omhoog↑ Levin (1972); (en) Chaisson, E.J.; 2005: Solar System Modelling, Tufts University. [2]
-
Omhoog↑ Wetherill 1991
-
Omhoog↑ Kleine et al 2005
-
Omhoog↑ Halliday 2006
-
Omhoog↑ Ida et al 1997; Canup & Asphaug 2001
-
Omhoog↑ Liu 1992; Melosh et al 1993
-
Omhoog↑ Newsom & Taylor 1989
-
Omhoog↑ Benz & Cameron 1990
-
Omhoog↑ Lunine 1999, p. 130-132
-
Omhoog↑ Morbidelli et al 2000
-
Omhoog↑ Lunine 1999, p. 132
-
Omhoog↑ (en) Warmflash & Weiss 2005
-
Omhoog↑ bijvoorbeeld door Mojzsis et al 1996
-
Omhoog↑ Dawkins 2004, p. 563–578, Mason 1991
-
↑ Omhoog naar:a b Fortey 1999, p. 38
-
Omhoog↑ Lunine 1999, p. 158-161; Orgel 1994; Woolfson 2000; eerste keer voorgesteld door Gilbert 1986
-
Omhoog↑ Holland 2006
-
Omhoog↑ Dawkins 2004, p. 564-566
-
Omhoog↑ De Marais 2000
-
Omhoog↑ Fortey 1999, p. 50-51
-
Omhoog↑ Lunine 1999, p. 213
-
Omhoog↑ Lunine 1999, p. 214
-
Omhoog↑ Lunine 1999, p. 211
-
Omhoog↑ Lunine 1999, p. 216
-
Omhoog↑ Lunine (1999), pp 219-220
-
Omhoog↑ Lunine 1999, p. 165
-
Omhoog↑ Lunine 1999, p. 95
-
Omhoog↑ Dalziel 1995
-
Omhoog↑ Deze sneeuwbalaardes werden voor het eerst als zodanig beschreven door Kirschvink (1992)
-
Omhoog↑ Xiao & Laflamme 2009
-
Omhoog↑ Lunine (1999), p 229
-
Omhoog↑ Levin (1987), p 330
-
Omhoog↑ (en) The Mass Extinctions: The Late Cambrian Extinction, BBC
-
Omhoog↑ Dawkins 2004; Stanley (1999), p 349
-
Omhoog↑ (en) The Mass Extinctions: The Late Ordovician Extinction, BBC
-
Omhoog↑ Pisani et al 2004
-
Omhoog↑ Heckman et al 2001
-
Omhoog↑ Fortey 1999, p. 138-140
-
Omhoog↑ Willis & McElwain 2002, p. 93
-
Omhoog↑ Johnson et al 1994
-
Omhoog↑ MacNaughton et al 2002
-
Omhoog↑ Clack 2005
-
Omhoog↑ Dawkins 2004, p. 293-296
-
Omhoog↑ Dawkins 2004, p. 254-256
-
Omhoog↑ Dawkins 2004, p. 169
-
Omhoog↑ (en) Archaeopteryx: An Early Bird, University of California, Berkeley, Museum of Paleontology
-
Omhoog↑ (en) Soltis, P.; Soltis, D. & Edwards, C.; 2005: Angiosperms, The Tree of Life Web Project
-
Omhoog↑ (en) Chaisson, E.J.; 2005: Recent Fossils, in Cosmic Evolution, Tufts University
-
Omhoog↑ Dawkins 2004, p. 160
-
↑ Omhoog naar:a b Roebroeks, 2000
-
Omhoog↑ Van Kolfschoten, 2008
-
Omhoog↑ Dawkins 2004, p. 100-101
-
Omhoog↑ Dawkins 2004, p. 95-99
-
Omhoog↑ Dawkins 2004, p. 67-71
-
Omhoog↑ McNeill 1999, p. 7
-
Omhoog↑ (en) Oldest Homo sapiens fossil claim rewrites our species' history, Ewen Callaway, Nature, 8 juni 2017
-
Omhoog↑ Hopfe 1987, p. 17
-
Omhoog↑ O’Brien 2002, p. 16
-
Omhoog↑ McNeill 1999, p. 8
-
Omhoog↑ Tudge 1998
-
Omhoog↑ Ruddiman 2003
-
Omhoog↑ McNeill 1999, p. 15
-
Omhoog↑ McNeill, p. 317-319
-
Omhoog↑ McNeill, p. 295-299
Literatuur
-
(en) Allègre, C.J.; Manhès, G. & Göpel, C.; 1995: The age of the Earth, Geochimica et Cosmochimica Acta 59, pp 1445-1456.
-
(en) Benz, W. & Cameron, A.G.W.; 1990: Terrestrial effects of the Giant Impact, LPI Conference on the Origin of the Earth, p. 61-67.
-
(en) Best, M.G.; 2003: Igneous and Metamorphic Petrology, Blackwell Publishing (2e druk), ISBN 978-1-4051-0588-0.
-
(en) Canup, R.M. & Asphaug, E.; 2001: Origin of the Moon in a giant impact near the end of the Earth's formation, Nature 412, p. 708-712.
-
(en) Clack, J.A.; 2005: Getting a Leg Up on Land, Scientific American 293(6), p. 100-107, [4]
-
(en) Dalziel, I.W.D.; 1995: Earth before Pangea, Scientific American 272(1), p. 58-63
-
(en) Dawkins, R.; 2004: The Ancestor's Tale: A Pilgrimage to the Dawn of Life, Houghton Mifflin Company, Boston, ISBN 0-618-00583-8
-
(en) De Marais, D.J.; 2000: Evolution: When Did Photosynthesis Emerge on Earth?, Science 289(5485), p. 1703–1705.
-
(en) Fortey, R.; 1999 (2e druk): Life: A Natural History of the First Four Billion Years of Life on Earth, Vintage Books, New York, ISBN 0-375-70261-X
-
(en) Gibbons, A.; 2003: Oldest Members of Homo sapiens Discovered in Africa, Science 300(5626), p. 1641, [5]
-
(en) Gilbert, W.; 1986: The RNA World, Nature 319, p. 618.
-
(en) Goren-Inbar, N.; Alperson, N.; Mordechai E.K., Simchoni, O.; Melamed, Y.; Ben-Nun, A. & Werker, E.; 2004: Evidence of Hominin Control of Fire at Gesher Benot Ya`aqov, Israel, Science 304(5671), p. 725–727, [6]
-
(en) Gradstein, F.M.; Ogg, J.G.; Schmitz, M.D. & Ogg, G.M.; 2012: A Geologic Time Scale 2012, Elsevier, ISBN 0444594256.
-
(en) Halliday, A.N.; 2006: The Origin of the Earth; What's New?, Elements 2(4), p. 205-210
-
(en) Heckman, D.S.; Geiser, D.M.; Eidell, B.R.; Stauffer, R.L.; Kardos, N.L. & Hedges, S.B.; 2001: Molecular evidence for the early colonization of land by fungi and plants, Science 293, p. 1129–1133 online abstract
-
(en) Holland, H.D.; 2006: The oxygenation of the atmosphere and oceans, Philosophical transactions of the Royal Society 361(1470), p. 903-915.
-
(en) Hopfe, L.M.; 1987 (4e druk): Religions of the World, MacMillan Publishing Company, New York, ISBN 0-02-356930-1
-
(en) Ida, S.; Canup, R.M. & Stewart, G.M.; 1997: Lunar accretion from an impact-generated disk, Nature 389, p. 353-357.
-
(en) Johnson, E.W.; Briggs, D.E.G.; Suthren, R.J.; Wright, J.L. & Tunniclifff, S.P.; 1994: Non-marine arthropod traces from the subaereal Ordivician Borrowdale volcanic group, English Lake District, Geological Magazine 131, p. 395–406, online abstract
-
(en) Kirschvink, J.L.; 1992: Late Proterozoic low-latitude global glaciation: the Snowball Earth, in: Schopf, J.W.; Klein, C. & Des Maris, D. (red.): The Proterozoic Biosphere: A Multidisciplinary Study, Cambridge University Press, ISBN 0521366151, p. 51–52.
-
(en) Kleine, T., Palme, H., Mezger, K. & Halliday, A.N., 2005: Hf-W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon, Science 310, pp. 1671-1674.
-
(en) Levin, H.L.; 1987: The Earth through time, Saunders College Publishing (3e druk), ISBN 0-03-008912-3.
-
(en) Levin, B.J.: 1972: On the Origin of the Solar System, in Reeves, H. (red.), Centre National de la Recherche Scientifique, pp. 341–360.
-
(en) Liu, L.-G.; 1992: Chemical composition of the Earth after the giant impact, Earth, Moon, and Planets 57(2), p. 85-97.
-
(en) Lunine, J.I., 1999: Earth: evolution of a habitable world, Cambridge University Press, Verenigd Koninkrijk, ISBN 0521644232
-
(en) MacNaughton, R.B.; Cole, J.M.; Dalrymple, R.W.; Braddy, S.J.; Briggs, D.E.G. & Lukie, T.D.; 2002: First steps on land: Arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada, Geology 30, p. 391–394, online abstract
-
(en) Mason, S.F.; 1991: Chemical Evolution, Carendon Press, Oxford
-
(en) McNeill, W.H.; 1999 (4e druk): A World History, Oxford University Press, New York, ISBN 0-19-511615-1
-
(en) Melosh, H.J.; Vickery, A.M. & Tonks, W.B.; 1993: Impacts and the early environment and evolution of the terrestrial planets, in Levy, H.J. & Lunine, J.I. (red.): Protostars and Planets III, University of Arizona Press, Tucson, pp. 1339-1370.
-
(en) Mojzsis, S.J.; Arrheniun, G.; McKeegan, K.D.; Harrison, T.M.; Nutman, A.P. & Friend, C.R.I.; 1996: Evidence for life on Earth before 3,800 million years ago, Nature 384, p. 55-59.
-
(en) Morbidelli, A.; Chambers, J.; Lunine, J.I.; Petit, J.M.; Robert, F.; Valsecchi, G.B. & Cyr, K.E.; 2000: Source regions and time scales for the delivery of water to Earth, Meteoritics & Planetary Science 35(6), p. 1309–1320.
-
(en) Newsom, H.E. & Taylor, S.R.; 1989: Geochemical implications of the formation of the Moon by a single giant impact, Nature 338, p. 29-34.
-
(en) O’Brien, P.K. (red.); 2002: Atlas of World History, concise edition, Oxford University Press, New York, ISBN 0-19-521921-X
-
(en) Orgel, L.E.; 1994: The origin of life on the Earth, Scientific American 271, p. 76-83.
-
(en) Pisani, D.; Poling, L.L.; Lyons-Weiler, M. & Hedges, S.B.; 2004: The colonization of land by animals: molecular phylogeny and divergence times among arthropods, BMC Biology 2, [7]
-
(nl) Roebroeks, W., 2000. Food for thought: naar aanleiding van het menu van de Neandertaler. Oratie bij de aanvaarding van het ambt van hoogleraar in de Archeologie van de Oude Steentijd aan de Universiteit Leiden op vrijdag 3 maart 2000. 24 pag. oratietekst
-
(en) Ruddiman, W. F., 2003: The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61, pp 261-293.
-
(en) Stanley, S.M., 1999: Earth System History, W.H. Freeman & Co, New York, ISBN 0716728826
-
(en) Stern, T.W. & Bleeker, W.; 1998: Age of the world's oldest rocks refined using Canada's SHRIMP: The Acasta Gneiss Complex, Northwest Territories, Canada, Geoscience Canada 25, pp 27-31.
-
(en) Tudge, C.; 1998: Neanderthals, Bandits and Farmers: How Agriculture Really Began, Weidenfeld & Nicolson, Londen, ISBN 0-297-84258-7
-
(nl) Van Kolfschoten, T., 2008: Het is een kwestie van kiezen., Oratie bij het aanvaarden van de leerstoel 'Paleozoölogie en biostratigrafie van het Kwartair', Leiden, 11 januari 2008, 19 pag. webversie[dode link]
-
(en) Warmflash, D. & Weiss, B.; 2005: Did Life Come From Another World?, Scientific American, p. 64–71.
-
(en) Wetherill, G.W.; 1991: Occurrence of Earth-Like Bodies in Planetary Systems, Science 253(5019), pp. 535-538.
-
(en) Willis, K.J. & McElwain, J.C.; 2002: The Evolution of Plants, Oxford University Press, Oxford, ISBN 0-19-850065-3
-
(en) Woolfson, A.; 2000: Life Without Genes, Flamingo, Londen, ISBN 978-0006548744
-
(en) Xiao, S. & Laflamme, M.; 2009: On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota, Trends in Ecology and Evolution 24, pp 31-40